WJEC Chemistry AS-level

2.5: Hydrocarbons

Practice Questions

England Specification

 Crude oil is a complex mixture of hydrocarbons, with samples from different locations in the world having different compositions. The table below gives the composition of crude oil from two locations.

Fraction	Percentage by mass	
	Brent Crude	Gulf of Suez
petroleum gases	2.4	1.2
naphtha	19.1	13.6
kerosene	14.2	12.7
gas oil	20.9	18.7
residue	43.4	53.8

	kerosene	14.2	12.7
	gas oil	20.9	18.7
	residue	43.4	53.8
	e different fractions are separa different boiling temperatures.	ted by fractional distillation. Exp	lain why the different fractions [2]
(b) Th	e petroleum gases produced fr	om crude oil can contain both p	ropane and butane
` '		nas a mass of 145 kg. Assuming olume that this gas would occup	all the petroleum gas released by at 1 atmosphere pressure.
[1 mol	of gas occupies 24.0 dm³ unde	er these conditions]	
			[3]

ii) Propane can be chlorinated by a similar method to methane.
. Give the condition(s) required for the chlorination of propane
[1]
Write an equation for the initiation stage of the chlorination of propane
[1]
II. The chlorination of propane also produces hexane as a minor product.Explain how this compound forms
[2]
 (c) Naphtha is used as a starting material for the production of alkenes, and these are then used to produce polymers such as poly(ethene). Discuss how poly(ethene) is produced, starting from naphtha. Your answer should include: An explanation of which of the two types of crude oil given would be more useful for producing alkenes. How the naphtha is converted into alkenes. An equation for the production of ethene from decane, an alkane with 10 carbon atoms. An explanation of what is meant by polymerisation. An equation for the polymerisation of ethene, clearly stating the type of polymerisation that is occurring. A different polymer in common use, with the structure of the monomer used in its production. [6] QWC [1]

		(Total 16
2. (a	a) Petroleum (crude oil) is separated into useful parts by fractional distillation.	
(i) Bri	riefly describe how fractional distillation can be carried out.	
		[2
(ii)	A fraction is treated further to give a branched-chain alkane. The mass of this alkane shows a molecularion, M+, at m/z 72.	spectrum
	Use this information to give the molecular formula and then suggest a formula for this alkane.	displayed [2]
	cracking is a process that is used in the petroleum industry to obtain smaller alkanes and the second control of the control o	ınd
alken		and

(ii)	are	nane is one of the products when nonane, C_9H_{20} , is cracked. The other probutane and butadiene, C_4H_6 . An equation that represents this reaction.	oducts [1]
(c)	Meth	nane reacts with chlorine in a substitution reaction.	
	(i)	The first stage of the reaction is as follows.	
		Cl ₂ → 2Cl•	
		State an essential condition for this stage.	[1]
	(ii)	State what is meant by the term propagation stage.	[1]
	(iii)	Write an equation that represents a propagation stage of this reaction.	[1]

(d) Study the reaction sequence below and then answer the questions that follow.

(i) Compour	nd A is a (Z)-isomer.	
Write the dis	splayed formula of the ($\it E$)-isomer of compound $\it F$	
		[1]
(ii) State the	e name of reagent W and the solvent in which it is	
		[1]
(iii) State the	e name of a catalyst used in the hydrogenation o	f compound R to produce compound C
(III) State tile	e hame of a catalyst used in the hydrogenation o	1 compound B to produce compound G .
		'
3.		
0.		
State which	ch one of the following formulae represents as	alkane. [1]
A	C_8H_{16}	
В	0 17	
C	C ₈ H ₁₈	

 \mathbf{D} $\mathbf{C}_{8}\mathbf{H}_{20}$

•••	The straight-chain alkane containing 19 carbon atoms is called nonadecane.	
(a) V	Write the molecular formula of nonadecane.	
		[1]
(b) V	When nonadecane is cracked, one of the smaller products formed can be octane.	
Writ	e an equation to show the cracking of nonadecane to produce octane.	
		[1]
	т)	otal 2)
5.	The elements in Group 7 in the Periodic Table can be described as p -block elements.	
	(a) State why these are described as p-block elements.	[1]
(b) A	All halogens are oxidising agents.	
(i) V	/hy are the halogens oxidising agents?	
		[1]
/::\ C		
(II) S	State, giving a reason, which halogen is the strongest oxidising agent.	
		[1]

(c)	${ m NaClO_3}$ was used as a weedkiller. Give the oxidation state of chlorine in ${ m NaClO_3}$.	
	Oxidation state	[1]
	ethane reacts with chlorine when exposed to sunlight. The first two stages of the mechanic eaction are initiation and propagation .	ism of
(i) Giv	ve the equation for the initiation reaction.	
		[1]
(ii) Gi	ive the equations for two propagation steps involved in the formation of chloromethane.	
		[2]
(e)	Chlorofluorocarbons, CFCs, were widely used as refrigerants but they caused environmental damage as a result of reactions involving radical mechanisms. The first stage of a radical mechanism is an initiation process similar to that in Complete the following equation to show the most likely initiation schlorofluoromethane, CH ₂ ClF, and give a reason for your answer.	(d).
	Reason	
		Total [9]

6. (a) Propene reacts with hydrogen bromide to give 2-bromopropane.	
(i) Draw the mechanism for this reaction.	
	[3]
(ii) Explain why the product of this reaction is mainly 2-bromopropane rather than 1-bromopropane	÷
	[2]
	_

(b)	isot	npound C is a compound of carbon, hydrogen and bromine only. Bromine has two opes, ⁷⁹ Br and ⁸¹ Br, in equal abundance. Use all the information below to deduce the cture of compound C , giving your reasoning. [6] QWC [1]
	•	Compound C contains 29.8% carbon, 4.2% hydrogen and 66.0% bromine by mass.
	•	The mass spectrum of compound ${\bf C}$ contains peaks at m/z of 15, 41 and a pair of peaks at 120 and 122.
	•	The infrared spectrum of compound $\bf C$ has absorptions at $550{\rm cm^{-1}}$, $1630{\rm cm^{-1}}$ and $3030{\rm cm^{-1}}$.
	•	Compound C is a Z-isomer.
		(Total 12)